N₂O emissions in corn/soybean systems: Fertilizer Management and Rotation Effects

Rodney T. Venterea and John M. Baker

USDA-ARS and Dept. Soil, Water & Climate, University of Minn. St. Paul

Collaborators: Carl Rosen (UMN, St. Paul)

Tyson Ochsner (OK St. Univ, formerly ARS)

Michael Dolan and Kurt Spokas (ARS)

- National GHG inventory
- •Life cycle analysis of biofuel production
- Establishment of C offset programs
- Uncertainty regarding fundamental questions, e.g.:
 - •Fertilizer mgmt practices & crop rotation effects

- Anhydrous ammonia and urea dominant in midwest
- Few studies with Anhydrous ammonia
 - 1 year of data comparing Anhydrous ammonia vs. Urea
- Emission models do not account for:
 - Chemical form, application method

- Two sites used for corn production in south-central Minnesota Site 1: silt loam soil (rainfed). Site 2: Loamy sand soil (irrigated)
- Randomized Complete Block experiments.
- Soils fertilized in Spring (~150 lbs N/acre = ~ 170 kg N/h)

Anhydrous Ammonia = NH₃: Pressurized gas, injected in subsurface band.

Urea = $(NH_2)_2CO$:

Solid granules (2-4 mm) applied to surface uniformly incorporated into soil by disking

Anhydrous Ammonia Injection: Sidedress Application at Site 2

Knives inject pressurized NH₃ gas:

~ 7 inches (18 cm) below surface.

Concentrated band of Nitrogen between each corn row.

Daily N₂O flux (ug N m⁻² h⁻¹) 2005, 2006, 2007 Growing Seasons

Effects of Fertilizer Type: Anhydrous Ammonia (AA) versus Urea

N₂O emissions twice as high from AA

Two cropping systems:

Cc= Corn after Corn

Cs = Corn after Soybean

Venterea et al. 2010. SSSAJ.

Rotation Effects

N₂O Emissions averaged across fertilizer treatments for each crop.

- Continuous Corn (Cc)
- Corn after Soybean (Cs)
- Soybean after Corn (Sc): Not fertilized

Venterea et al. 2010. SSSAJ.

Site Specific GHG Impact of Management Changes

Using data from Site 1

Annualized CO₂ equivalents for a two-yr rotation

Mt C ha-1

Shift from AA to Urea	GHG savings
Continuous corn C/S rotation	-0.50 -0.25
	(similar to reduced tillage)

Shift from C/S rotation to Continuous corn	GHG cost
Anhydrous ammonia	+0.37
Urea	+0.10 (-73%)

Impact on National-Scale GHG Emissions

- Assume: N_2O Emission factor for $AA = 2 \times EF$ of other fertilizer types
- Complete substitution of AA by other fertilizer types:
 - •Reduce national N₂O emissions by 25%
 - •Using EPA estimate of Direct Emissions from cropland (2006) •0.25 x 140 Tg CO₂ = 35 Tg CO₂ saved per year

Higher N₂O Production With Anhydrous Ammonia

Higher N₂O Production With Anhydrous Ammonia

Venterea et al. 2010. SSSAJ.

Nitrification kinetics modeling

Monod kinetics with inhibition term(s)

$$\frac{dB_{j}}{dt} = B_{j} \left(\frac{\mu_{\max, j}}{K_{s, j} + K_{inh} + C_{j}} C_{j} - d_{j} \right)$$

Venterea and Rolston, JEQ. 2000

Nitrobacter

0 5 10⁵

Nitrobacter

0 5 10 15 20

Time (d)

Some degree of nitrite accumulation inherent to the nitrification process.

Amount and timing depends on toxicity effects.

Not understood well enough to predict dynamics at a given site.

Kinetics of N₂O Production from Nitrite N_2O **Concentrated Band** Nitrification, step 1 NO₂-Nitrification, step 2 NO_3^- NH₃/NH₄+ 0.04 Nitrite amended soil: Non-sterile N₂O production (µg N g⁻¹ h⁻¹) γ-irradiated (5 Mrad) Biotic: "nitrifier 0.03 denitrification" 0.02 Abiotic 0.01 0.00 10 20 30 40 **50** NO_{2}^{-} added (µg N g⁻¹)

Venterea, 2007. Global Change Biol. 13, 1798–1809.

Nitrifier Denitrification Response to Oxygen Status

Biological component: Gradually increasing N₂O production as O₂ decreases.

Nitrifier Denitrification Response to Oxygen Status

Biological source responds differently than denitrification (abrupt increase when $O_2 < 5\%$)

Nitric Oxide (NO) Emissions

- Pattern is opposite compared to N₂O.
- NO:N₂O ratio for urea = 2 compared to < 0.4 for AA.
- High NO reactivity in soil

Concluding Remarks / Directions

- Fertilizer form and placement matter
 - Side-by-side studies needed, different sites & soils.
 - In denitrification-dominated soils, results could be different.
- Not clear if effect in AA treatment due to the chemical form, or banding.
 - Same effect might occur in cases where urea is banded.
- Models & inventories not accounting for important sources of variation
 - Fertilizer Use data are available, could be combined with improved emissions models to develop more accurate inventories